This is an articulation of the eight inference rules as strategies in the reverse method. The reverse method instills a habit of approaching problems with *goal-oriented* strategies.

The most important feature of this method is its basis in wants and needs. Strategies are driven by what is desired, that is, by what you *want*. Knowledge of what you *need* comes out of your understanding of what you want.

NOTE: "Introduction" means it builds a statement "Elimination" means it breaks apart a statement

And Introduction: Conjunction (Conj)

If you want a conjunction on a line $(\Box \bullet \triangle)$, then introduce it. You'll need \Box on one line, and \triangle on a separate line.

Want $\Box \bullet \triangle$, then need \Box as well as \triangle .

And Elimination: *Simplification* (Simp)

If you want part of a conjunction on a line (i.e. one of the conjuncts \Box , \triangle), then you can *simply* take it.

Want \Box or \triangle , have $\Box \bullet \triangle$, take it!

Or Introduction: *Addition* (Add)

If you want a disjunction on a line $(\Box \lor \triangle)$, then introduce it. You'll need \Box on a line, or \triangle on a line.

Want $\Box \lor \Delta$, then need \Box or Δ .

Or Elimination: *Disjunctive Syllogism* (DS)

If you want part of a disjunction on a line (i.e. one of the disjuncts \Box, \triangle), then eliminate the disjunction and take the part you want. You'll need the negation of one of its disjuncts $\neg \Box$ or $\neg \triangle$ on a line.

Want \Box or \triangle , have $\Box \lor \triangle$, then need $\sim \Box$ (for \triangle) or $\sim \triangle$ (for \Box)

Or Introduction: Constructive Dilemma (CD)

If you want a disjunction on a line $(\bigcirc \lor \clubsuit)$, then introduce it the hard way. You'll need two conditionals whose antecedents (their \Box s) are the disjuncts of the disjunction $(\Box \lor \triangle)$, and whose consequents (their \triangle s)are the disjuncts of the disjunction desired $(\bigcirc \lor \clubsuit)$, all on separate lines.

Want $\bigcirc \checkmark \bigstar$, then need $\square \rightarrow \bigcirc$, as well as $\triangle \rightarrow \bigstar$, and $\square \lor \triangle$

Conditional Elimination: Modus Ponens (MP)

If you want the consequent (the \triangle) of a conditional ($\Box \rightarrow \triangle$) on a line, then eliminate the conditional and cleanly get the consequent. You'll need the antecedent (the \Box) on a separate line to take the consequent.

Want \triangle , have $\Box \rightarrow \triangle$, then need \Box .

Conditional Elimination "Backwards": Modus Tollens (MT)

If you want the antecedent (the \Box) of a conditional ($\Box \rightarrow \Delta$) on a line, then that's just too bad, you'll never get it! If, however, you want the *negation* of the antecedent ($\sim \Box$) on a line, then eliminate the conditional and get it. You'll need the negation of the consequent ($\sim \Delta$) on a separate line to take the negation of the antecedent.

Want ~ \Box , have $\Box \rightarrow \triangle$, then need ~ \triangle .

Conditional Introduction: *Hypothetical Syllogism* (HS)

If you want the conditional $(\Box \rightarrow O)$ on a line, then introduce it by building it from two other conditionals. You'll need one conditional on a line that "starts" with the antecedent you're trying to build (i.e. \Box), and you need another conditional on a separate line that "ends" with the consequent of the conditional you're trying to build (i.e. O). Also, *both* conditionals must "share" a common element \triangle , as the consequent of first and as the antecedent of the second.

Want $\Box \rightarrow O$, then need $\Box \rightarrow \triangle$ as well as $\triangle \rightarrow O$.